On semidefinite representations of plane quartics

نویسنده

  • Didier Henrion
چکیده

This note focuses on the problem of representing convex sets as projections of the cone of positive semidefinite matrices, in the particular case of sets generated by bivariate polynomials of degree four. Conditions are given for the convex hull of a plane quartic to be exactly semidefinite representable with at most 12 lifting variables. If the quartic is rationally parametrizable, an exact semidefinite representation with 2 lifting variables can be obtained. Various numerical examples illustrate the techniques and suggest further research directions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quartic Curves and Their Bitangents

A smooth quartic curve in the complex projective plane has 36 inequivalent representations as a symmetric determinant of linear forms and 63 representations as a sum of three squares. These correspond to Cayley octads and Steiner complexes respectively. We present exact algorithms for computing these objects from the 28 bitangents. This expresses Vinnikov quartics as spectrahedra andpositive qu...

متن کامل

Semidefinite representation of convex hulls of rational varieties

Using elementary duality properties of positive semidefinite moment matrices and polynomial sum-of-squares decompositions, we prove that the convex hull of rationally parameterized algebraic varieties is semidefinite representable (that is, it can be represented as a projection of an affine section of the cone of positive semidefinite matrices) in the case of (a) curves; (b) hypersurfaces param...

متن کامل

A New Proof of Hilbert’s Theorem on Ternary Quartics

Hilbert proved that a non-negative real quartic form f(x, y, z) is the sum of three squares of quadratic forms. We give a new proof which shows that if the plane curve Q defined by f is smooth, then f has exactly 8 such representations, up to equivalence. They correspond to those real 2-torsion points of the Jacobian of Q which are not represented by a conjugation-invariant divisor on Q.

متن کامل

Ela a Remark on Waring Decompositions of Some Special Plane Quartics∗

Motivated by questions on tensor rank, this work concerns the following unexpected result concerning Waring decompositions of plane quartics containing a double line, along with some preparatory and additional remarks. Let x, l1, . . . , l7 be linear forms and q a quadratic form on a vector space of dimension 3. If xq = l 1 + · · · + l 7 and the lines l1 = 0, . . ., l7 = 0 in P intersect x = 0 ...

متن کامل

On Blow-ups of the Quintic Del Pezzo 3-fold and Varieties of Power Sums of Quartic Hypersurfaces

We construct new subvarieties in the varieties of power sums for certain quartic hypersurfaces. This provides a generalization of Mukai’s description of smooth prime Fano threefolds of genus twelve as the varieties of power sums for plane quartics. In fact in [TZ08] we show that these quartics are exactly the Scorza quartics associated to general pairs of trigonal curves and ineffective theta c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008